Dynamic Programming for Boolean decisions

Lecture 07.03
by Marina Barsky

Partitioning souvenirs

Subset sum

Partitioning souvenirs

- ☐ You and your friend have just returned back home after visiting various countries
- During your trip you were buying different souvenirs of various prices, and put them together into a single pile
- ☐ Now you would like to evenly split all the souvenirs into two subsets of equal sum

Souvenir Partitioning Problem

Input: The prices of *n* items $d_1, d_2, ..., d_n$

in dollars (integers).

same total cost.

No. otherwise.

Output: Yes, if the items can be divided into two

groups, such that each group has the

Sample problem instance

	1	2	3	4	5	6	7
\$\$	3	2	3	2	2	5	3

A total of 7 items given with their costs

The output for this instance of the problem is 'yes'. This is because the items can be divided into two groups that both have a total cost of \$10

3	2	3	2	2	5	3
1	2	3	4	5	6	7

The blue and red items have the same total cost of \$10

DP solution: brainstorming

☐What would help us to know if a set of numbers can be divided into 2 subsets with equal sums?

☐ How can we find out if there is a subset with a given sum?

☐ What are optimal subproblems?

Think of an optimal solution to a subset sum

☐ If there is a subset with total cost D, and it contains item i, then there also should be a subset with cost D-d_i

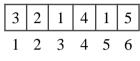
As always, we can start by checking if all possible costs from 1 to D can be obtained from a current set, and we will reuse this knowledge to obtain an answer for cost D

Example

☐ First, we compute total cost:

- ☐ The task becomes to find out if there is a subset that sums up to 16/2 = 8
- We will try methodically to fit each item into the solution, checking if the following total costs are possible: 0,1,2,3,4,5,6,7 and finally 8.
- ☐ This check will produce a Boolean value: Y(True) or N(False)

Create DP table



Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)									
d ₂ (2)									
d ₃ (1)									
d ₄ (4)									
d ₅ (1)									
d ₆ (5)									

Base condition

Is it possible to create a subset with a total cost **0**? Yes, just do not take any items.

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т								
d ₂ (2)	Т								
d ₃ (1)	Т								
d ₄ (4)	Т								
d ₅ (1)	Т								
d ₆ (5)	Т								

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F							
d ₂ (2)	Т								
d ₃ (1)	Т								
d ₄ (4)	Т								
d ₅ (1)	Т	·				·			
d ₆ (5)	Т								

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F						
d ₂ (2)	Т								
d ₃ (1)	Т								
d ₄ (4)	Т								
d ₅ (1)	Т								
d ₆ (5)	Т								

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т					
d ₂ (2)	Т								
d ₃ (1)	Т								
d ₄ (4)	Т								
d ₅ (1)	Т	·				·			
d ₆ (5)	Т								

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т								
d ₃ (1)	Т								
d ₄ (4)	Т								
d ₅ (1)	Т	·		·		·			
d ₆ (5)	Т								

Using only item 1 (cost 3) and/or item 2(cost 2), it is still not possible to create a subset with total cost 1.

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F							
d ₃ (1)	Т								
d ₄ (4)	Т								
d ₅ (1)	Т								
d ₆ (5)	Т								

Using only item 1 (cost 3) and item 2(cost 2), it is not possible to create a subset with total cost 1, but it is possible to create a subset with total cost 2

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т						
d ₃ (1)	Т								
d ₄ (4)	Т								
d ₅ (1)	Т								
d ₆ (5)	Т			·					

Using only d1 and d2, can we have a subset with total cost 3? Yes, we already know that we can do it even without d2

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Н					
d ₃ (1)	Т								
d ₄ (4)	Т								
d ₅ (1)	Т					·			
d ₆ (5)	Т								

How do we check if a subset sum 4 is possible? We know that it was False when we used d1 only, so if we use d2, then we need to check if a subset of (4-2) was possible. It was not.

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Т	F				
d ₃ (1)	Т								
d ₄ (4)	Т								
d ₅ (1)	Т								
d ₆ (5)	Т								

To check for d=5, take item d2(2) and see if cost 5-2 was possible with the previous item(s)

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Т	F	Т	F	F	F
d ₃ (1)	Т								
d ₄ (4)	Т								
d ₅ (1)	Т								
d ₆ (5)	Т								

Considering items 1,2, and 3

1,2,3 are possible.

What about 4? Current item d3 has cost 1. Is it possible to have a cost (4-1) with the other 2 items? Yes

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Т	F	Т	F	F	F
d ₃ (1)	Т	Т	Т	Т	Т				
d ₄ (4)	Т								
d ₅ (1)	Т								
d ₆ (5)	Т								

Considering items 1,2, and 3

Using only items d1, d2, d3 we get the following boolean answers.

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Т	F	Т	F	F	F
d ₃ (1)	Т	Т	Т	Т	Т	Т	Т	F	F
d ₄ (4)	Т								
d ₅ (1)	Т								
d ₆ (5)	Т								

Considering items 1,2,3,4

For d4(4) we do not even need to consider this item for costs 1,2,3,4,5,6 - we could make these subsets even without item d4(4).

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Т	F	Т	F	F	F
d ₃ (1)	Т	Т	Т	Т	Т	Т	Т	F	F
d ₄ (4)	Т	Т	Т	Т	Т	Т	Т		
d ₅ (1)	Т								
d ₆ (5)	Т								

Considering items 1,2,3,4

What about 7? Fit d4(4) and see if (7-4) was True.

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Т	F	Т	F	F	F
d ₃ (1)	Т	Т	Т	Т	Т	Т	Т	F	F
d ₄ (4)	Т	Т	Т	Т	Т	Т	Т	Т	
d ₅ (1)	Т								
d ₆ (5)	Т								

Considering items 1,2,3,4

Same holds for total cost 8.

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Т	F	Т	F	F	F
d ₃ (1)	Т	Т	Т	Т	Т	Т	Т	F	F
d ₄ (4)	Т	Т	Т	Т	Т	Т	Т	Т	Т
d ₅ (1)	Т								
d ₆ (5)	Т								

Is total cost 8 possible?

At this point we can stop. We know that it is possible to form a subset with a total cost 8 using only the first 4 items.

But what is this subset?

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Т	F	Т	F	F	F
d ₃ (1)	Т	Т	Т	Т	Т	Т	Т	F	F
d ₄ (4)	Т	Т	Т	Т	Т	Т	Т	Т	Т
d ₅ (1)	Т								
d ₆ (5)	Т								

Recovering the subset with sum 8: trace back

The subset clearly includes item d4 - without it 8 was not possible

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Т	F	Т	F	F	F
d ₃ (1)	Т	Т	Т	Т	Т	Т	Т	F	F
d ₄ (4)	Т	Т	Т	Т	Т	Т	Т	Т	Т
d ₅ (1)	Т								
d ₆ (5)	Т								

Recovering the subset with sum 8: trace back

If it includes item of cost 4, we need to look at total cost (8-4). This one only became True when we added item d3.

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Т	F	Т	F	F	F
d ₃ (1)	Т	Т	Т	Т	Т	Т	Т	F	F
d ₄ (4)	Т	Т	Т	Т	Т	Т	Т	Т	Т
d ₅ (1)	Т								
d ₆ (5)	Т								

Recovering the subset with sum 8: trace back

If the solution includes item d3(1), we need to look at total cost (4-1). This one is True because a previous item produced True. This item was d1(3)

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Т	F	Т	F	F	F
d ₃ (1)	Т	Т	Т	Т	Т	Т	Т	F	F
d ₄ (4)	Т	Т	Т	Т	Т	Т	Т	Т	Т
d ₅ (1)	Т								
d ₆ (5)	Т								

Answer: Yes, it is possible to create 2 subsets with equal total cost

$$d1(3) + d3(1) + d4(4) = d2(2) + d5(1) + d6(5)$$

3 + 1 + 4 = 2 + 1 + 5

Total cost→	0	1	2	3	4	5	6	7	8
d ₁ (3)	Т	F	F	Т	F	F	F	F	F
d ₂ (2)	Т	F	Т	Т	F	Т	F	F	F
d ₃ (1)	Т	Т	Т	Т	Т	Т	Т	F	F
d ₄ (4)	Т	Т	Т	Т	Т	Т	Т	Т	Т
d ₅ (1)	Т					·			
d ₆ (5)	Т								

Game of Rocks

Optimal game strategy

Game: 1-2 rocks

- 2 players
- 2 piles of rocks:

with *n* and *m* rocks respectively

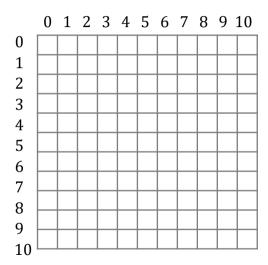
- Each turn, one player may take either 1 rock (from either pile) or 2 rocks (one from each pile)
- Once the rocks are taken, they are removed from play
- The player that takes the last rock wins

Winning strategy with DP

- \Box To find the winning strategy for the m + n game, we first construct an mxn table R.
- ☐ If Player 1 can always win the n + m game, then we would say R(n, m) = W, but if Player 1 has no winning strategy against a player that always makes the right moves, we would write R(n, m) = L.
- \square Computing R(n, m) for arbitrary n and m seems difficult, but we can build on smaller values.

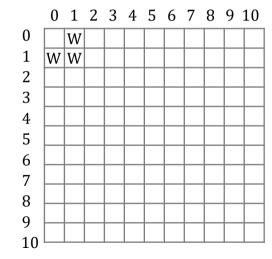
DP table for game outcomes

- ☐ Construct an mxn table R.
- ☐ Example: let m=n=10.



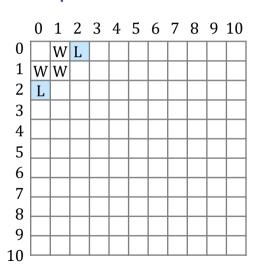
Simple subproblems first

- Notably R(0, 1), R(1, 0), and R(1, 1), are clearly winning propositions for Player 1 since with a single move Player 1 can win.
- Thus, we fill in entries (1, 1), (0, 1), and (1, 0) as W.



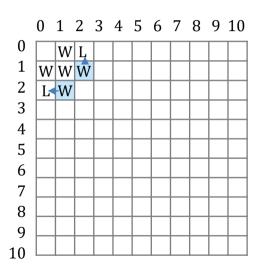
Solve larger subproblems based on solutions to the smaller problems

- In the (2, 0) case, the only move that Player 1 can make leads to the (1, 0) case that, as we already know, is a winning position for his opponent.
- A similar analysis applies to the (0, 2) case.



Solve larger subproblems based on solutions to the smaller problems

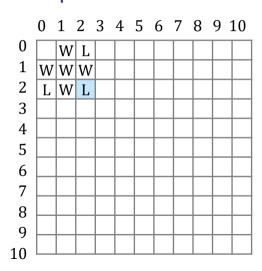
- In the (2, 1) case, Player 1 can make 3 different moves that lead respectively to the games of (1, 1), (2, 0), or (1, 0).
- One of these cases, (2, 0), leads to a losing position for his opponent and therefore (2, 1) is a winning position.
- The case (1, 2) is symmetric to (2, 1)



Solve larger subproblems based on solutions to the smaller problems

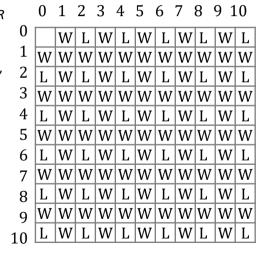
In the (2, 2) case, Player 1 can make three different moves that lead to entries (2, 1), (1, 2), and (1, 1).

All of these entries are winning positions for his opponent and therefore R(2, 2) = L.



Fill DP table with game outcomes

- We can proceed filling in R in this way by noticing that for the entry (i, j) to be L, all the entries above, diagonally to the left, and directly to the left, must be W.
- ➤ These entries: ((i -1, j), (i -1, j -1), (i, j -1)) correspond to the three possible moves that Player 1 can make.



Rocks: winning strategy

☐ The *Rocks* algorithm determines if Player 1 wins or loses.

☐ If Player 1 wins in an n+m game, Rocks returns W. If Player 1 loses, Rocks returns L.

■ We introduce an artificial initial condition, R(0, 0)
 = L to simplify the pseudocode.

Algorithm *Rocks*(*n*, *m*) $R[0, 0] \leftarrow L$ for *i* from 1 to *n*: # initialize rows if R[i-1, 0] = W: $R[i, 0] \leftarrow L$ else:

$$|Se: R[i, 0] \leftarrow W$$

for *j* from 1 to *m*: if R[0, i-1] = W:

for *i* from 1 to *m*:

 $R[i, i] \leftarrow L$

 $R[i, i] \leftarrow W$

else:

return R[n, m]

else: $R[0,i] \leftarrow W$

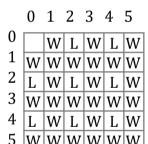
$$R[0, j] \leftarrow L$$
else:
$$R[0, i] \leftarrow W$$

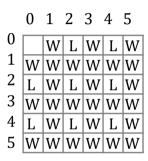
for *i* from 1 to *n*:

if R[i-1, j-1] = W and R[i, j-1] = W and R[i-1, j] = W:

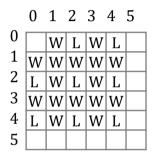
Using DP table for best strategy or game AI

- We can use the DP table to always play the winning strategy.
- If R(n,m) = W, and Player 1 starts first, he can always win: by taking the number of rocks which lead to the losing position of our opponent.
- If R(n,m) = L, then Player 1 can only hope that Player 2 does not use the same table, and makes a mistake.





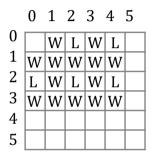
Player 1 takes (1,1).



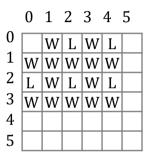
Player 1 takes (1,1).

No matter what Player 2 does, it leads to the winning state of Player 1.

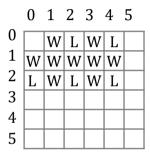
Say, Player 2 takes (1,0)



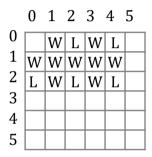
Player 2 takes (1,0)



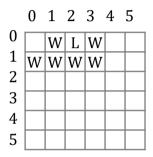
Player 1 should take (1,0).



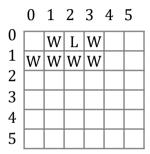
Player 1 takes (1,0).



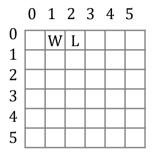
Player 2 takes (1,1).



Player 2 takes (1,1).



Player 1 should take (1,1).



Player 1 takes (1,1).

At this point the victory for Player 1 is guaranteed.

Identifying patterns

A faster algorithm relies on the simple pattern in R, and checks if n and m are both even, in which case the player 1 loses.

☐ However, though FastRocks is more efficient than Rocks, it may be difficult to modify it for similar games.

